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ABSTRACT 
 

Jared Cohen 

Shapley Values, Random Forests, and LASSO Regression for Explaining Factor Importance in 

US Cross-Sectional Returns 

(Under the direction of Dr. Gill Segal) 

 

An asset’s expected return is based on a set of risk factors and the asset’s exposure to 

each factor. A core pillar of factor investing research has been the identification of new factors 

that can best explain cross-sectional returns. Researchers have identified hundreds of factors, but 

many of these factors are redundant, containing similar information about risk. A key challenge 

is using this vast collection of discovered factors to determine which factors are actually the most 

important. I create LASSO and random forest machine learning models for this purpose due to 

these models’ abilities to handle high-dimensional data. I use Shapley values, feature 

permutation, and mean decrease in impurity to evaluate feature importance for the random forest 

model, and I compare those results to the feature importance obtained through LASSO and OLS 

regression. From a set of 150 factors, I find that the momentum (UMD), earnings announcement 

return (ear), high-minus-low (HML), sales-to-cash ratio (salecash), and small-minus-big (SMB) 

factors are the most important overall. The different models produce moderate differences in 

factor importance rankings, and the different feature importance metrics for the random forest 

produce slight variations in feature importance rankings. 
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INTRODUCTION AND LITERATURE REVIEW 
 
Introduction 
 

The aim of factor investing is to model asset prices and returns, and the core idea of 

factor investing is that asset prices are determined by their exposures to various risk factors. The 

factor investing research dates back decades and includes hundreds of papers. In this literature 

review, I will discuss the foundational linear models of factor investing, explain the limitations 

of those linear factor models, survey various approaches in which machine learning is used to 

improve these models, discuss the use of Shapley values to increase the interpretability of 

machine learning models, and then explain how my research will fit into this body of literature. 

 
Linear Models 
 

Factor investing research relies heavily on linear models, and the majority of asset pricing 

research over the past decades employs linear models such as portfolio sorts. In this section, I 

will explain the capital asset pricing model and arbitrage pricing theory. I will then discuss the 

linear portfolio sort methodology and its use in the identification of factors. 

 
The Capital Asset Pricing Model  
 

The foundation of factor investing is the Capital Asset Pricing Model (CAPM). 

Developed by Sharpe (1964), CAPM is a one-factor model where an asset’s returns are 

determined by its exposure to the market. The higher an asset’s beta coefficient, the more 

exposure it has to this risk factor and the higher its expected return is. CAPM is a widely 

recognized and used model that is standard in both industry and academia to date (Jagannathan 

& McGrattan, 1995; Berk & van Binsbergen, 2017). 
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Arbitrage Pricing Theory 
 

Arbitrage Pricing Theory (APT) was the next major development in the asset pricing 

literature. APT asserts that the returns of an asset can be modeled as a linear function of several 

factors with sensitivities to each factor being factor-specific beta coefficients (Ross, 1976). APT 

built on CAPM by allowing for the inclusion of several factors to better explain the sources of 

risk and how they affect asset prices. 

 
The Identification of Factors Using Linear Models 
 

Many researchers from the 1970s through today have focused on identifying factors that 

explain cross-sectional returns to create factor models in an APT framework. Hundreds of factors 

have been identified throughout the research using a portfolio sort methodology which was first 

introduced by Fama and French (1993). Portfolio sorting shows whether there is a relationship 

between a characteristic and expected returns by sorting returns by the characteristic value, 

dividing the assets into portfolios based on that characteristic, and then comparing differences in 

average returns across portfolios (Cattaneo et al., 2020). The following table displays the 

contributions of various researchers over time in seminal papers identifying factors and 

proposing factor models. 
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Table 1. 

 Contributions to Factor Model Research 

Researchers Year Contribution 

Fama & 
MacBeth 

1973 Fama and MacBeth showed that pricing of common stocks reflected 
attempts of risk-averse investors to hold efficient portfolios based on 
expected value and dispersion of returns. 

Basu 1977 Basu showed that portfolios with lower price-earnings ratios had higher 
risk-adjusted returns, providing evidence against the efficient market 
hypothesis. 

Stattman 1980 Stattman demonstrated that portfolios with lower price-book values had 
higher returns. 

Banz 1981 Banz identified the size premium whereby smaller firms have larger 
expected returns. 

De Bondt & 
Thaler 

1985 De Bondt and Thaler demonstrated empirically that stocks with low 
long-term past returns tend to have higher future returns. 

Jegadeesh 1990 Jegadeesh showed empirical evidence for the predictability of 
individual stocks using previous returns. He showed a negative first-
order serial correlation and a positive higher-order serial correlation. 

Fama & 
French 

1992 Fama and French showed that size and book-to-market equity capture 
the cross-sectional variation in average stock returns associated with 
market risk, size, leverage, book-to-market equity, and earnings-price 
ratios. They also showed that the relationship between market risk and 
average return in flat when tests allow for variation in market risk that 
is unrelated to size. 

Fama & 
French 

1993 Fama & French identified the value premium whereby firms with lower 
Price/Book values have higher expected returns. They also proposed a 
3-factor model with market risk, size, and value. 

Jegadeesh & 
Titman 

1993 Jegadeesh and Titman identified a high momentum premium whereby 
firms with higher past returns have higher expected future returns. 

Fama & 
French 

1996 When looking at patterns in returns not explained by CAPM from firm 
characteristics such as size, earnings/price, cash flow/price, book-to-
market equity, past sales growth, long-term past return, and short-term 
past return, Fama and French found that by using their 3-factor model 
instead of CAPM, these anomalies largely disappeared except for 
short-term momentum. 
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Carhart 1997 Carhart proposed a 4-factor model with market risk, size, value, and 
momentum. 

Fama & 
French 

2015 Fama & French updated their 3-factor model by proposing a 5-factor 
model with market risk, value, size, profitability, and firm investment. 

Papenkov 2019 Papenkov demonstrated meaningfully heterogeneous risk across sectors 
for each factor in the Fama-French five-factor model. The sector-
heterogenous model improved R-squared by 5% on average. 

 
Much of the asset pricing literature from the 1970s through the 2010s focused on 

exploring the identification and testing of additional factors and attempting to create 

parsimonious models to explain as much variation as possible with as few factors as possible. 

 
Limitations of Linear Models 
 

The accuracy and understandability of linear models often deteriorate in high-

dimensional space (Feng et al., 2020; Bryzgalova et al., 2020; Gu et al., 2020; Chen et al., 2021). 

In this section, I will explain the shortcomings of previous linear models related to the robustness 

and reproducibility of results, the construction of test assets, and the curse of dimensionality 

arising from the multitude of factors. 

 
Robustness and Reproducibility of Results 
 

Concerns over robustness and reproducibility of results arise from the testing of many 

factors and the variability in data and test asset construction. Harvey et al. (2016) argued the 

usual cutoff levels for statistical significance may not be appropriate given the known number of 

factors that have been tried and the reasonable assumption that many more factors have been 

tried but were not published. Significant results are likely found by testing many hypotheses 

without controlling the false discovery rate. With so many factors being tested, some factors 

appear significant due to chance (Harvey et al., 2016, p. 36).    
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Challenges to reproducibility arise from a lack of internal validity that is not robust to 

slightly different methodologies or data (Jensen et al., 2021). Additionally, models such as the 

Fama-French 3-factor model are used as benchmark models to evaluate whether new factors add 

explanatory power; however, this decision imposes the unrealistic assumption that the selected 

model is the true one and does not miss any additional factors (Feng et al., 2020, p. 1336). 

Selecting an incorrect model is problematic since it can lead to omitted variable bias when useful 

factors are not included or to efficiency loss when many useless or redundant factors are 

included. 

 

Constructing Test Assets 

Researchers have identified challenges with the portfolio sort method, especially when 

dealing with a large number of factors (Moritz & Zimmermann, 2016). In this method, the 

researcher sorts stocks into three to ten portfolios each month based on the value of a particular 

variable. In the next step, subsequent returns for each portfolio are calculated, checking whether 

there is a monotone relation between the sorting variable and these subsequent portfolio returns. 

The relevance of the sorting variable is then assessed by comparing the return to some 

equilibrium model of asset prices (such as the capital asset pricing model) or by assessing the 

monotonicity of the returns over deciles. To sort by a second characteristic, the stocks are further 

split into three to ten groups by the new variable. The importance of that second characteristic is 

determined by assessing the behavior of returns over the deciles for that second characteristic 

(Fama & French, 1993).  

This portfolio sort methodology is a powerful, nonparametric tool that works best in low-

dimensional cases; however, problems arise when sorting on more variables since the portfolios 
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will have fewer stocks the more variables are added. For example, triple-sorted 10x10x10 

portfolios would lead to the creation of 1,000 test portfolios. Each portfolio would only have a 

few stocks in it which would be problematic due to an inability to diversify away the 

idiosyncratic risk. Considering the presence of hundreds of factors, this portfolio sort 

methodology is not feasible in the higher dimensional spaces of all factors (Moritz & 

Zimmermann, 2016). 

Beyond the issues in higher dimensional space, Bryzgalova et al. (2020) have also shown 

that the conventional sorting-based portfolios fail to span the stochastic discount factor, thus 

leading to the wrong conclusions when used to evaluate or construct asset pricing models. These 

conventional cross-sections do not reflect the joint effect of multiple characteristics, neglecting 

their interactions. This problem arises even in low dimensional space, and stacking additional 

sorts against each other compounds this problem (Bryzgalova et al., 2020, p. 1). Similarly, Feng 

et al. (2020) have also demonstrated that these models have generally poor performance in 

explaining a large available cross-section of expected returns beyond 25 size and value-sorted 

portfolios, indicating omitted factors are likely to be present in the data. 

 

The Curse of Dimensionality / Too Many Factors for Linear Models 
 

Researchers have identified that standard linear models are not well-suited for high 

dimensionality (a large number of predictor variables) since linear models are unable to account 

for variable interactions and non-linear effects, which have been identified as important in asset 

pricing (Bryzgalova et al., 2020; Gu et al., 2020; Chen et al., 2021). Standard linear models also 

become inefficient or ineffective when the number of factors approaches the number of 

observations in the data (Wang et al., 2016; Feng et al., 2020, p. 1335; Gu et al., 2020, p. 2234). 
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Linear models cannot properly incorporate all identified factors, yet Kozak et al. (2018) 

demonstrate that linear four or five-factor models are also unable to adequately explain the cross-

section of expected stock returns. Standard methodologies do not work well in a high-

dimensional setting due to this curse of dimensionality, but including a large amount of 

information is important to produce more accurate models. Feng et al. (2020) thus argue that 

dimension-reduction and regularization techniques are needed for valid inference in this high-

dimensional factor space. 

 

Machine Learning 

Machine learning models are well-suited for dealing with the high-dimensionality of 

factor data due to allowances for nonlinearity, regularization, and interaction effects. By moving 

beyond the traditional portfolio sorts and linear regression methodology, the existing factors can 

be tested in a new way, creating more accurate models (Gu et al. 2020; Feng et al., 2020). In this 

section, I will discuss machine learning approaches for constructing test assets, evaluating new 

and existing factors, and selecting models. 

 
Methods for Constructing Test Assets 
 

Machine learning approaches allow researchers to create test assets in a way that spans 

the stochastic discount factor and solve the problems of the standard portfolio sort methodology. 

Moritz and Zimmermann (2016) created a novel approach to grouping individual stocks into 

managed portfolios that reflect the information in a given set of characteristics. They used 

conditional portfolio sorts where the sorting variable and value need to be estimated. They made 

AP-Trees, which deliver a small cross-section of interpretable, well-diversified portfolios that 

provide a robust span of the SDF, conditional on many characteristics. The method allows for 
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flexible variable selection at each branch by using sorts deeper than two levels, which allows for 

the creation of better test assets. Bryzgalova et al. (2020) argued that the choice of test assets has 

a large influence on results since expected returns are explained by the returns of test assets and 

the model that succeeds in pricing them. While most of the literature has historically focused on 

the pricing aspect as discussed in the preceding sections, choosing the right test assets is equally 

crucial (Bryzgalova et al., 2020). 

 
Methods for Evaluating Given Factors 
 

Statistical techniques, machine learning regression models, and machine learning 

clustering algorithms can be used to evaluate the importance of given factors among the set of 

hundreds of factors. For example, Harvey et al. (2016) provide a multiple testing statistical 

framework for factor significance where the t-statistic must be greater than 3.0 to be significant 

(rather than the 2.0 typical cutoff). This statistical method evaluates previously discovered 

factors with stricter conditions, which leads to fewer factors being significant, condensing the 

factor set to those with higher significance.  

In a machine learning regression model approach, Feng et al. (2020) created a LASSO 

regression-based methodology for estimating and testing the marginal importance of any factor 

in pricing the cross-section of expected returns beyond what the existing factors can explain. 

This methodology provides a framework for assessing the importance of a given factor after 

accounting for all other identified factors and can help filter redundant factors.  

Jensen et al. (2021) created a machine learning classification model to algorithmically 

classify factors into one of 13 themes. These themes possess a high degree of within-theme 

correlation and conceptual economic similarity while inter-theme correlation is low. This factor 

taxonomy allows for viewing factors as 13 highly correlated clusters rather than hundreds of 
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individual factors. Factors that are economically similar likely contain the same information 

about risk, so the methodology of Jensen et al. (2021) provides a systematic framework for 

condensing the factor set in a mathematically sound and conceptually intuitive way. 

 
Methods for Selecting Models 
 

Another branch of research focuses on using machine learning to estimate a factor model 

rather than creating frameworks for evaluating given factors. As shown in Table 2, researchers 

have employed various machine learning methods such as neural networks, principal component 

analysis, LASSO and other generalized linear models, and tree-based models in order to process 

the multitude of factors to find key drivers and propose parsimonious models (Messmer, 2017; 

Kozak et al., 2018; Wolff & Neugebauer, 2019; Feng et al., 2020; Gu et al., 2020; Chen et al., 

2021). 
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Table 2. 

Machine Learning Methods for Selecting Factor Models 

Researchers Year Approach & Contribution 

Messmer 2017 Messmer used a deep feedforward neural network based on 68 firm 
characteristics to predict the cross-section of US stock returns. 
Messmer found that long-short portfolios can generate attractive risk-
adjusted returns compared to linear benchmarks, and the results are 
robust to size, weighting schemes, and portfolio cutoff points. 
Messmer identified that price-related characteristics, like short-term 
reversal and 12-month momentum, are the main drivers of the return 
prediction while the majority of firm characteristics are of little 
importance.  

Kozak et al. 2018 Kozak et al. showed that a small number of principal components of 
the universe of potential characteristics-based factors can approximate 
the stochastic discount factor well.  

Wolff & 
Neugebauer 

2019 Wolff and Neugebauer used general linear models and tree-based 
machine learning models to predict equity premiums based on 
fundamental, macroeconomic, sentiment, and risk data. They found 
that linear models such as penalized least squares and principal 
component regression outperformed the benchmark while other ML 
models used failed to outperform the benchmark. An investment 
strategy using machine learning prediction in a market timing strategy, 
however, outperformed a buy-and-hold investment.  

Feng et al. 2020 Feng et al. imposed lower dimensionality on a model using LASSO 
regression.  

Gu et al. 2020 Gu et al. compared the performance of various machine learning 
methods for asset pricing and showed large economic gains emerged 
from using ML-based forecasts. Neural networks and trees were the 
best performing methods due to the allowance for nonlinear predictor 
interactions that other methods miss, and all methods identified 
variations in momentum, liquidity, and volatility as the dominant 
predictive signals.  

Chen et al. 2021 Chen et al. used deep neural networks to estimate an asset pricing 
model for individual stock returns. 

 
 



 
 

11 

Neural networks and tree-based models were most often shown to be the best models, 

likely due to an allowance for nonlinear effects; however, these models suffer from lower 

interpretability (Messmer, 2017; Gu et al. 2020; Chen et al., 2021). Additionally, some papers 

show that generalized linear models such as penalized least squares, principal components, and 

LASSO regression actually outperformed other machine learning models like trees (Wolff & 

Neugebauer, 2019; Feng et al., 2020). Across different models, momentum-related factors were 

often the largest drivers of returns while short-term reversal, liquidity, and volatility were also 

dominant return drivers (Messmer, 2017; Gu et al., 2020). 

 
Shapley Values for Increasing Model Interpretability  
 

Shapley values can explain how much each feature contributes to the value of a model’s 

prediction using a game-theoretical method for assigning payouts to players depending on their 

contribution to the total payout of a game (Molnar, 2022, p. 215). In this section, I will explain 

the game-theoretical basis of Shapley values, the application of Shapley values to model 

interpretability, and the previous application of Shapley values in the finance literature. 

 
The Game Theoretical Basis of Shapley Values  
 

Shapley values are the payouts that each player in a game receives for their contribution 

to the total payout of the game, and these values rely on certain assumptions and axioms. This 

method assumes that utility is objective and transferable and that games are cooperative affairs 

and adequately represented by their characteristic functions (Shapley, 1952, p. 1). Another 

assumption defines a game as a set of rules with specified players in the playing positions, and 

rules describe an abstract game (Shapley, 1952, p. 2). The value of a game is a function that 

associates each player with a real number and satisfies the following axioms: 
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1. Symmetry: The value is a property of an abstract game. 

2. Efficiency: The value represents a distribution of the full yield of the game. 

3. Law of Aggregation: When two independent games are combined, their values must be  

added player by player (Shapley, 1952, p. 4). 

 
Players cooperate in a coalition and receive a certain profit from this cooperation. First, 

the players agree to play a game in a grand coalition. Starting with a single player, the coalition 

randomly adds one member at a time until all N players have been admitted. Each player 

demands and is promised the amount which their adherence adds to the value of the coalition as 

determined by the function ∇. The grand coalition then plays the game efficiently, achieving the 

amount ∇(N), which is just enough to meet the total amount promised (Shapley, 1952, p. 13). 

 
Application of Shapley Values for Model Interpretability 
 

Shapley values give a measure of how much each feature contributes to the difference 

between an observation’s predicted value and the average prediction for all observations. Each 

feature value of an observation is a player in a game where the prediction is the payout. The 

Shapley value is the average marginal contribution of a feature value across all possible 

combinations (coalitions) of features (players). Shapley values thus determine how to fairly 

distribute the payout among features based on how much each feature contributes to explaining 

the difference between the predicted value of a given observation and the average prediction 

across all observations. That difference equals the sum of these contributions across each feature, 

so the results are easily comparable and interpretable. The larger the payout a given feature 

receives, the more important that feature is in driving predictions. (Molnar, 2022, p. 215). 
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Shapley Values in Finance Literature 
 

Shapley values have been used in finance research to provide alternate measures of risk 

and to explain price predictions. Mussard and Terraza (2008) used Shapley values to decompose 

portfolio risk as measured by sample covariance. Those values allowed for classifying the 

securities in portfolios according to risk scales. The Shapley values expressed how much each 

security in the portfolio contributed to overall portfolio risk, including both systematic and 

idiosyncratic risk. Ortmann (2016) similarly demonstrated that Shapley values can be used to 

decompose market risk, specifically the beta factor in CAPM. Ortmann explained that a given 

asset’s beta factor can be interpreted as that asset’s share of market risk or as that asset’s average 

marginal contribution to market risk. Through this linking of Shapley values and the beta factor, 

Ortmann claimed that Shapley values could lead to a deeper understanding of systematic risk and 

the beta factor. Shalit (2020) further explored portfolio risk decomposition by using Shapley 

values to quantity relative risk of securities in optimal portfolios, comparing the risk ranking 

derived from Shapley values to that derived from betas. Systematic risk measured as the relative 

covariance of stock returns plays a large role in pricing securities, but estimating this beta value 

is difficult. By viewing portfolios as cooperative games where players (assets) are playing to 

minimize risk, investors can calculate the exact amount that each asset contributes to portfolio 

risk. This decomposition of risk using Shapley values for mean-variance and mean-Gini efficient 

portfolios provides a better ranking of assets by their total contribution to the risk of an optimal 

portfolio (Shalit, 2020; Shalit, 2021). In another application of risk decomposition, Tarashev et 

al. (2016) used Shapley values to assess the allocation of system-wide risk to individual banking 

institutions to provide a measure of their systemic importance, and they found that size is the 

main determinant of systemic importance for banks. Lastly, Giudici and Raffinetti (2021) used 
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Shapley values to derive variable importance in a machine learning model for predicting the 

price of Bitcoin.  

 
The Need for My Research 
 

My research will be the first application of Shapley values to interpret feature importance 

in machine learning factor models. My research will address the limitations of standard linear 

models, the conflicting evidence about the best machine learning models, and the lack of 

interpretability for machine learning models. 

 
Addressing Limitations of Linear Models 
 

I will address the high-dimensionality problems associated with standard linear models 

by using the LASSO regression and random forest regression machine learning models within 

the Fama and MacBeth (1973) double-pass regression framework. I will use standard sorted 

portfolios and use ordinary least squares first-pass regressions to obtain each asset’s exposure to 

each factor. However, instead of using another linear second-pass regression to determine which 

factors are priced, I will substitute LASSO and random forest regression models. Both models 

should offer improvements due to regularization (LASSO) and nonlinearity (random forest) 

while acting as a sound comparable due to using traditional sorted portfolios as test assets. 

 
Machine Learning Model Comparative Efficacy 
 
 Previous literature disagrees on whether generalized linear models or nonlinear models 

outperform, so I will use both a LASSO (generalized linear) and random forest (nonlinear) 

model to provide additional evidence. For example, Wolff and Neugebauer (2019) and Feng et 

al. (2020) supports the use of general linear models like LASSO. Conversely, Messmer (2017), 

Gu et al. (2020), and Chen et al. (2021) show outperformance for neural networks and tree-based 
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models. By comparing the accuracy and factor importances resulting from each model, I will 

contribute valuable information about how these models behave on this data. 

 
Shapley Values for Increasing Model Interpretability 
 
 I will employ a novel use of Shapley values to determine feature importance for machine 

learning factor models to address the lack of interpretability common in higher-performing 

machine learning models. By using Shapley values, I will determine how much each factor 

contributes to the difference between an asset’s return and the average return, resulting in a 

ranking of factor importance. Shapley values have previously been applied to decomposing risk 

within a portfolio to determine how much each asset contributes to portfolio risk (Mussard & 

Terraza, 2008; Ortmann, 2016; Shalit, 2020; Shalit, 2021); however, no one has used Shapley 

values to decompose stock returns to determine the contributions of various factors in driving 

returns. My research will not necessarily infer a parsimonious model; however, it will determine 

which factors tend to have the strongest effect on returns and provide a new method of testing 

factor importance that can be used in conjunction with any model. 
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METHODOLOGY 
 
Introduction 
 

My research aims to explain variations in stock returns using LASSO and random forest 

machine learning models that address many limitations of traditional factor investing research. I 

will first download all necessary data and import it into Python to prepare it for analysis. Next, I 

will construct test assets, build models, and then analyze the output data. In the following 

sections, I will discuss my plan for data collection and cleaning, provide background information 

on factor investing, detail my research design, and explain the rationale of my design. 

 
Data Collection and Cleaning 
 

My research involves building models to explain variations in asset returns based on 

factors constructed from fundamental stock data. The primary types of data I need are monthly 

returns of test assets and monthly values of factors. Empirical finance researchers prefer factors 

to be robust over time, so I will use data as far back as available. For monthly test asset return 

data, I will use the following datasets from Kenneth French’s website: “10 Portfolios formed on 

momentum,” “25 Portfolios Formed on Size and Book-to-Market (5 x 5),” and “48 Industry 

Portfolios.” I will also use the risk-free rate from the dataset “Fama/French 3 Factors” from 

French’s website. These datasets include data from January 1927 to February 2022. For factor 

data, I will use a dataset provided by Feng et al. (2020) containing monthly values for 150 

different factors from July 1976 to December 2017. A summary of this dataset is provided in the 

Appendix. This dataset is built using data from the CRSP and Compustat databases. I will use 

data from July 1976 through December 2017 for my analysis because that is the time period 

covered by all of my datasets. 
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Background on Factor Investing Research 
 

The core idea of factor investing is that asset prices are determined by their exposures to 

various risk factors. Researchers in asset pricing and factor investing have thus pursued the 

identification of such factors in order to create models that better estimate asset prices and 

returns. I will explain the construction of test assets and factors, traditional Fama-MacBeth 

regressions, and the issue of factor proliferation. 

 

Test Asset and Factor Construction 
 

Test assets’ returns are used to construct factors, and researchers typically use 

characteristic-sorted portfolios rather than individual stocks in order to diversify out the 

idiosyncratic risk (Fama & French, 1993; Cattaneo et al., 2020). For example, a 3x2 double 

sorted portfolio on size and value would involve splitting all stocks into three buckets based on 

market capitalization and then further separating those buckets based on price to book ratio. The 

differences in monthly returns of these portfolios are used to construct the factors. 

 
Fama-MacBeth Regressions 

 Traditional factor investing research uses a two-pass linear regression methodology 

employed by Fama and MacBeth (1973). First, monthly returns for each asset are regressed on 

various factor data. Then, average test asset monthly returns are regressed on the beta 

coefficients of each factor determined in the first set of regressions. The coefficients from the 

second regression are the risk premia for each factor, and if the coefficient is statistically 

significant, the factor is a priced factor (Fama & MacBeth, 1973). 
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Factor Proliferation 

 Asset pricing research has led to hundreds of potential factors for explaining cross-

sectional stock returns, and more advanced models are needed to sort through these factors (Feng 

et al., 2020; Bryzgalova et al., 2020; Gu et al., 2020; Chen et al., 2021). Linear models are poorly 

suited for high-dimensional space, and this high-dimensionality makes statistical inference 

difficult (Wang et al., 2016; Gu et al., 2020, p. 2234). Variable selection techniques can be useful 

in reducing dimensionality but produce poor estimates unless appropriate econometric methods 

are used to account for model selection mistakes. For example, Feng et al. (2020) combine a 

double-selection LASSO econometric method with the Fama-MacBeth two-pass regressions to 

evaluate the marginal contribution of a factor to explaining asset prices. Determining whether 

new factors can add explanatory power beyond the previously discovered factors is important for 

creating accurate models without redundancy or unnecessary complexity. 

 
Research Design 
 

My research will extend the two-pass regression methodology of Fama and MacBeth 

(1973) by substituting machine learning models for the second regression. My research also 

draws from the methodology of Feng et al. (2020) by using LASSO regression in conjunction 

with Fama-MacBeth regressions to determine the marginal contribution of a factor for explaining 

the cross-section of returns. My research design will involve several phases: test asset selection, 

first-pass linear regression, second-pass linear regression, second-pass LASSO regression, 

second-pass random forest regression, calculation of mean decrease in impurity and feature 

permutation feature importance, and computation of Shapley values. 
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Selecting Test Assets 
 

I will use pre-constructed test assets from Kenneth French’s website. These test assets 

include 25 5x5 double-sorted portfolios on size and book-to-market, 10 portfolios sorted on 

momentum, and 48 portfolios sorted by industry. These three datasets contain portfolios 

constructed in various ways, so insights derived from these test assets should be generalizable. 

 
First-Pass Linear Regression 
 

I will obtain every test asset’s exposure to each factor by regressing the monthly returns 

of test assets on the values of each factor. I will run these regressions using the LinearRegression 

module from Python’s scikit-learn machine learning library. This process will entail running 83 

regressions—one regression for each test asset—giving me the factor exposures for each asset.  

 
Second-Pass Linear Regression 
 

A cross-sectional regression of test asset average returns on the assets’ factor exposures 

will then determine the coefficients and significance of each factor. Python’s scikit-learn will 

again be used for this regression. The coefficients in this regression correspond to risk premia 

(the market prices of risk), so larger values indicate more important factors. This ordinary least 

square regression model, however, will be limited since the number of observations (83) is less 

than the number of independent variables (150). 

 
Second-Pass LASSO Regression 
 

LASSO regression produces a parsimonious model by selecting the few factors that best 

explain the cross-section of returns, and I will employ a LASSO for the second regression to 

determine which of the 150 factors are most important. LASSO regression is a machine learning 

model that extends multilinear regression by penalizing the inclusion of more predictor variables. 
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The LASSO regression will drop less important variables by scaling them to zero while the more 

important variables remain in the model. A regularization parameter (lambda) is used to indicate 

how strict the penalty will be: a stricter penalty means more variables will be dropped. A lambda 

of 0 is equivalent to an ordinary least square regression model, while the strictest lambda, 1, 

scales all coefficients to zero. Using the Lasso module in scikit-learn, I will construct LASSO 

models with lambda values ranging from 0 to 1 in increments of 0.001 in order to observe which 

factors are selected as the penalty becomes stricter. The most important factors will be selected at 

the highest lambda level, and the next most important factors will be revealed as the lambda 

value is progressively lowered. 

 
Second-Pass Random Forest Regression 
 
 Random forest regressors combine many independent, nonlinear tree models into a single 

prediction to reduce variance and increase accuracy. Each tree within the model samples features 

and observations randomly from the dataset, resulting in different trees. An individual tree is 

constructed by splitting the data at nodes in a way that produces the most separation between 

observations in the left node and the right node. These splitting conditions are determined from 

the features in the dataset (e.g., the left node has data where feature “a” is less than “x” and the 

right node would include data where feature “a” is greater than or equal to “x”). This splitting 

process repeats until a specified depth level or until the tree can no longer produce heterogeneous 

child nodes. Large variations occur between the trees since the individual trees can only choose 

from a random subset of features, resulting in lower correlation across trees. A random forest 

will average the predictions that each tree independently generates to produce an aggregate 

output. 
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 I will create a random forest regression model to predict test asset returns using factor 

exposures. Using the RandomForestRegressor module in scikit-learn, I will construct a random 

forest model containing 1,000 individual decision trees. The maximum depth will not be 

specified, so the trees will continue splitting until the random sample of data used by a given tree 

has no more variation to split on.  

 

Mean Impurity Decrease and Feature Permutation Factor Importance 
 

I will calculate measures of feature importance for the random forest using the mean 

decrease in impurity and feature permutation. To find the mean decrease in impurity, I will use 

the built-in “feature_importances_” attribute of a model made using the RandomForestRegressor 

module in Python’s scikit-learn library. For feature permutation, I will utilize Python’s 

permutation_importance module in scikit-learn. These methods derive feature importance based 

on two different approaches for evaluating a feature's contribution to the model: one based on 

how much including a factor improves a model (mean decrease in impurity) and one based on 

how much excluding a factor hurts a model (feature permutation). 

 
Computation of Shapley Values 
 
 Shapley values represent how much each factor contributes to the difference between the 

predicted return of a given asset and the average return across all test assets. I will compute the 

mean absolute Shapley value for each factor in my random forest model to determine the overall 

importance that each factor has in the model. Using the TreeExplainer method in the SHAP 

Python package, I will compute every factor’s Shapley value for each observation. The Shapley 

value for each feature acts as a force to increase or decrease the prediction. The prediction starts 

at a baseline, which will be the average monthly return across my test assets. For a given 
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observation, each feature’s Shapley value will drive the prediction away from baseline such that 

the cumulative effect of all features leads to the actual prediction for that observation. The size of 

a factor's Shapley value indicates how much of the variation between an observation’s predicted 

return and the average return can be attributed to that factor. The mean absolute value of Shapley 

values for a factor can measure the overall importance of that factor in the model. The higher the 

mean absolute Shapley value, the more important that factor is in explaining cross-sectional 

returns (Molnar, 2022). 

 A factor’s Shapley value is its contribution to the difference between the average test 

asset return and an individual observation’s predicted test asset return, weighted and summed 

over every possible combination of feature values. This computation is performed by evaluating 

all possible sets of feature values with and without a given marginal feature. To calculate the 

Shapley values, the first step is to select a feature, j, an instance, x, and a number of iterations, 

M. In each iteration, a random observation, z, is selected from the data, and a random order of 

features is chosen. Two new instances are then created by combining values from the instances z 

and x: X+j and X-j. X+j is similar to x, but all feature values occurring after feature j based on 

the random order are replaced by the corresponding feature value in z. X-j is the same as X+j, 

except the value for feature j from z is used instead of the value for feature j from x. The 

difference between the predictions of these instances, X+j and X-j, is then computed, and this 

difference corresponds to the marginal contribution of feature j. The marginal contributions from 

each iteration are then averaged together to produce the Shapely value for feature j and 

observation x, and the number of iterations should be sufficiently large such that every 

permutation of features and every instance are randomly selected at least once. This procedure 

must be repeated for every feature and for every observation in the data in order to obtain each 
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feature’s Shapley value for every observation, and the SHAP package takes care of all of these 

calculations. Computing the mean absolute value of Shapley values for each feature across all 

observations can then provide a measure of overall feature importance (Molnar, 2022). 

 
Rationale 
 

This research design extends the widely used factor investing methods of Fama and 

MacBeth (1973) by incorporating machine learning methods to address the challenges presented 

by the vast array of previously identified factors. Below, I will explain the benefits of the 

LASSO and random forest models, compare approaches to feature importance, and then discuss 

the limitations of my methodology.  

 

Benefits of LASSO and Random Forest Models 

 Machine learning models, like LASSO and random forests, are well-suited for dealing 

with the high-dimensionality of factor data due to allowances for nonlinearity, regularization, 

and interaction effects (Gu et al., 2020; Feng et al., 2020). LASSO is effective for handling a 

large number of predictor variables to determine a smaller number of driving factors. The model 

is also easily interpretable since it is a type of linear model (Feng et al., 2020). Random forests 

are an effective model for factor data due to their nonlinearity and allowance for complex 

interaction effects between features (Gu et al., 2020). Random forests are not easily interpretable, 

however, so methods, such as mean impurity decrease, feature permutation, and Shapley values, 

are needed to understand feature importance within the model. Using LASSO and random forests 

can lead to better models that uncover insights into which factors drive the most variation in 

cross-sectional returns. 
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Comparative Approaches to Feature Importance 
 

I will compare the feature importance obtained through OLS coefficients and LASSO 

selection to the feature importance of random forests obtained through the mean decrease in 

impurity, feature permutation, and Shapley values in order to analyze the persistence or variation 

of feature importance across models and feature importance metrics. 

I will evaluate feature importance for the ordinary least squares model by comparing the 

regression coefficients. These coefficients are the risk premia for each factor. Comparing 

coefficient size is acceptable since the units of all independent data are the same. However, 

looking at coefficients is imperfect since they represent the price per unit risk, and the amount of 

risk may vary between factors. The expected asset return is the sum of all factors times their 

respective risk premiums, so the product of the factor value and factor risk premium is what 

better represents the importance of a factor in explaining returns. I will thus use coefficient size 

as an imperfect proxy for factor importance. 

LASSO determines feature importance by eliminating less important features from the 

model and selecting only the most important factors. The stricter the lambda penalty, the fewer 

features remain and the more important those features are. I will rank factors by importance 

based on their order of addition to the model as the penalty term shrinks. 

Impurity-based feature importance is based on the decrease of Gini impurity when a 

feature is used to split a node. Gini impurity, ranging from 0 to 0.5, is a measurement of the 

likelihood of misclassification of a new instance of a random variable. Gini impurity is used 

when constructing decision trees, as minimizing Gini impurity leads to the choice of which 

feature splits a node. Feature importance is thus measured by the magnitude of the decrease in 

Gini impurity when a given feature is chosen to split a node. The decreases in Gini impurity 
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whenever a given feature is chosen to split a node across every tree are summed, and this sum is 

divided by the number of trees in the forest. This average decrease in Gini impurity gives a 

measure of relative feature importance. 

Feature permutation determines feature importance by measuring the decrease in model 

performance when a given feature is randomly shuffled. This random shuffling breaks the 

relationship between that feature and the dependent variable. A decrease in model score thus 

indicates how much the model depends on that feature, and the more model performance drops, 

the higher the importance is of that feature. 

Shapley values measure feature importance by attributing a portion of variation to each 

feature. The mean absolute value of Shapley values for a factor can measure the overall 

importance of that factor in the model. The higher the mean absolute Shapley value, the more 

important that factor is in explaining cross-sectional returns. The benefit of Shapley values is 

their greater interpretability. The Shapley value of a feature for a single observation gives the 

amount by which that feature moves the average prediction towards the expected prediction. The 

mean absolute Shapley value for a feature shows how much that feature contributes to the actual 

predictions of each observation on average. Shapley values are thus easily interpretable because 

they are units of the target variable: monthly returns of test assets. 

 

Addressing Limitations 
 

The primary limitations of this methodology center around lack of inference for feature 

importance, lack of robustness for LASSO, and competition between correlated features for 

Shapley values. First, none of the measures of feature importance are technically statistical 

inferences. Shapley values, feature permutation feature importance, and mean decrease in 

impurity are not supposed to be methods of inference; however, recognizing this fact is 
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important. Also, parsimonious models selected through LASSO may not be robust without 

econometric modifications, which I do not use. As explained by Feng et al. (2020), changing the 

LASSO penalty value would likely change the output of which factors were most important. 

Finally, the Shapley values obtained may not be ideal because attribution must be split between 

economically similar factors. If the data contains more factors within one economic theme than 

another, then the total Shapley values attributed to factors within the former theme will be 

divided by a larger number, resulting in any given factor having a lower Shapley value. One 

potential method to address this issue would be to incorporate clustering of economically similar 

factors like in the methodology of Jensen et al. (2020). 
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RESULTS 

  
Introduction 
 

In this section, I explore the performance of my second-stage regression models and 

describe the features selected as important by each model. I will first describe the output of my 

ordinary linear model. Next, I will discuss the performance and results of my LASSO model 

with varying penalty parameter values. I will then analyze the output of my random forest 

regression model. Lastly, I will compare feature importances obtained through OLS, LASSO, 

mean decrease in impurity for random forest, feature permutation for random forests, and 

Shapley values for random forests. 

 
Ordinary Least Squares Regression Model 
 
 The second-stage ordinary least squares multilinear regression with all 150 factors had a 

perfect R-squared of 1 but was plagued by statistical concerns. First, while a higher R-squared 

typically signals that a model is accurate, in this case, the R-squared is 1 by virtue of the fact that 

the model contains 150 independent variables. Adding additional independent variables to an 

OLS regression can only increase R-squared. Even a random variable with no correlation to the 

output variable will still slightly increase R-squared. Due to this effect, the 150 factors in this 

model drove R-squared up to 1 despite any lack of actual prediction power. The model is also 

unable to conduct hypothesis tests due to the lack of any degrees of freedom. Since the number 

of features (150) exceeds the number of observations (83), the measures of statistical inference 

break down. As Figure 1 illustrates, the standard errors are infinite, and t-statistics are zero while 

p-values and confidence intervals are undefined. The only information obtainable from this 
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regression is the coefficient values; however, the statistical significance of any of these 

coefficients is indeterminate, so the trustworthiness of this data is low. 

 

Figure 1. 

Second-Stage OLS Regression Output 

 

Note. The output for the coefficients is limited to the first nine rows in order to demonstrate the 

issues with the output without using unnecessary space. 

Factors cannot be compared based on significance levels or marginal contribution to R-

squared in this model, so the only way to evaluate factor importance is by comparing the 

magnitude of the coefficients. As displayed in Table 3, the corporate investment (cinvest) factor 

has the largest coefficient by a wide margin. The return on invested capital (roic), convertible 

debt indicator (convind), organizational capital (orgcap), earnings announcement return (ear), 

and momentum (UMD) factors have the next largest coefficients by absolute value. Table A1 

contains a key for all factor abbreviations.  
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Table 3. 

Factors with Highest Absolute Value OLS Coefficients 

Factor Coefficient 

cinvest 0.416292 

roic 0.246895 

convind 0.238540 

orgcap 0.234098 

ear -0.216295 

UMD 0.212912 

herf 0.207966 

mom36m 0.202833 

ol -0.195675 

absacc -0.195352 

quick -0.192430 

HML 0.191448 

SMB 0.188681 

ala 0.185452 

poa -0.171021 

pm -0.170793 

dcoa -0.147339 

std_dolvol -0.146275 

etr -0.145250 

zerotrade -0.144881 

Note. Negative coefficients are red, and positive coefficients are black for readability 
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LASSO Regression Model 
 
 I ran many LASSO regression models to analyze the behavior of model performance and 

feature selection with varying regularization penalty levels. I first tested LASSO models with 

penalty values ranging from 0 to 1 at increments of 0.01. A penalty of 1 always shrinks all 

coefficients to zero, and I found that in this model, any penalty value greater than or equal to 

0.066 was sufficient to shrink all coefficients to zero. Conversely, a penalty value of 0 does not 

shrink any coefficients and is equivalent to an OLS regression with all 150 factors. Table 4 

displays the R-squared values, mean absolute errors, and the number of features selected in each 

LASSO model with different penalty values. As the penalty value increases, the number of 

coefficients selected decreases, and the R-squared also decreases while the mean absolute error 

increases.  
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Table 4. 

LASSO Results with Varying Regularization Penalty 

Penalty Value R-Squared (%) Mean Absolute Error # Features Selected 

0.000 100.0 0.0002 150 

0.001 90.6 0.0449 56 

0.002 81.9 0.0637 45 

0.003 72.0 0.0808 38 

0.004 65.3 0.0908 28 

0.005 59.9 0.0977 24 

0.006 54.6 0.1034 20 

0.007 49.7 0.1086 18 

0.008 45.0 0.1135 16 

0.009 40.6 0.1182 14 

0.010 36.4 0.1223 12 

0.012 28.6 0.1294 11 

0.013 24.5 0.1329 10 

0.014 20.5 0.1361 9 

0.015 17.0 0.1387 6 

0.017 11.1 0.1432 6 

0.018 8.0 0.1456 5 

0.019 6.3 0.1470 3 

0.023 3.6 0.1492 2 

0.030 1.7 0.1510 1 

0.066 0.0 0.1534 0 
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My next step was determining which coefficients were selected at each level of penalty 

strictness. I ran another series of LASSO models with penalties ranging from 0 to 0.065, but I 

now used increments of 0.0005. The goal of this increased granularity was to ensure only one 

coefficient was cut after each increment, so I could rank the importance of each factor. I 

determined the most important factor to be the factor that remained in a 1-factor model. 

Similarly, the n-th most important factor would be the n-th last factor to be dropped by the 

LASSO as the penalty became more stringent. The n-th most important factor would also be the 

n-th factor to be selected as the penalty becomes more lenient. Table 5 displays the ranking for 

the 20 most important factors and the highest penalty value at which each factor is included. The 

most important factors in the LASSO model were the invest (capital expenditures and inventory), 

salecash (sales to cash), pchsaleinv (% change sales-to-inventory), gma (gross profitability), and 

UMD (momentum) factors. 
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Table 5.  

Ranking of Factor Importance in LASSO Model  

Factor Importance Rank Highest Penalty Value to Select 

invest 1 0.0630 

salecash 2 0.0290 

pchsaleinv 3 0.0225 

gma 4 0.0185 

UMD 5 0.0180 

quick 6 0.0175 

dnca 7 0.0145 

HML 8 0.0145 

std_turn 9 0.0140 

pctacc 10 0.0135 

nef 11 0.0125 

ear 12 0.0110 

sp 13 0.0095 

roic 14 0.0090 

dsti 15 0.0085 

SMB 16 0.0080 

ol 17 0.0075 

orgcap 18 0.0070 

aeavol 19 0.0065 

QMJ 20 0.0060 
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Random Forest Regression Model 
 
 In this section, I will discuss the factor importance determined from using mean impurity 

decrease, feature permutation, and Shapley values on my random forest model. 

 
Mean Decrease in Impurity Feature Importance 
 

The UMD (momentum), ear (earnings announcement return), currant (current ratio), dsti 

(change in short-term investments), salescash (sales to cash), and HML (high minus low) factors 

were the most important based on mean decrease in impurity. Table 6 displays the mean 

decrease in impurity feature importance score for each factor. As Figure 2 illustrates, relative 

feature importance scores drop off rapidly. When looking at the feature importance for all 150 

factors, the distribution of scores exhibits an exponential decay. When resticing the distribution 

to the 50 most important factors (as Figure 3 shows), the drop-off in values is less severe; 

however, the handful of most important features still seems to dominate. Six factors emerge as 

the most important by a decent margin. This difference can be seen more easily in Figure 4, as 

the view is restricted to only the 20 most important factors. 
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Table 6. 

Mean Decrease in Impurity Feature Importance 

Factor Importance 

UMD 0.044 

ear 0.038 

currat 0.034 

dsti 0.030 

salecash 0.028 

HML 0.026 

dy 0.021 

nef 0.021 

stdacc 0.020 

LIQ_PS 0.019 

SMB 0.018 

stdcf 0.018 

maxret 0.018 

sue 0.015 

QMJ 0.015 

grltnoa 0.013 

ta 0.013 

divo 0.012 

age 0.012 

sp 0.011 

retvol 0.011 

Note. All other values are 0.010 or below 
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Figure 2.  

All 150 Factors by Mean Decrease in Impurity Feature Importance 

 

 
Figure 3. 

Top 50 Factors by Mean Decrease in Impurity Feature Importance 
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Figure 4. 

Top 20 Factors by Mean Decrease in Impurity Feature Importance 

 

 
Feature Permutation Feature Importance 
 

Feature permutation factor importance can be interpreted as the average amount by which 

the score of the model (i.e., R-squared) drops when a given factor is randomly shuffled. Similar 

to mean impurity decrease, the UMD, ear, currant, dsti, and HML factors were the most 

important factors based on feature permutation-based factor importance too. Table 7 displays the 

feature permutation feature importance score for each factor. As Figure 5 illustrates, relative 

feature importance scores drop off rapidly, even more so than the mean decrease in impurity 

importance. When limiting the distribution to the 50 most important factors (as Figure 6 shows), 

the drop-off in values more less severe for the first half of features while feature importances 

begin dropping more slowly for the less important features. Figure 7 shows that the 5 most 

important factors domine in relative feature importance. 
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Table 7. 

Feature Permutation Importance 

Factor Importance 

UMD 0.043 

ear 0.039 

dsti 0.031 

currat 0.029 

HML  0.029 

dy 0.021 

sue 0.018 

salecash 0.018 

SMB 0.016 

ta 0.014 

nef 0.014 

LIQ_PS 0.013 

stdcf 0.013 

stdacc 0.013 

maxret 0.012 

retvol 0.010 

QMJ 0.010 

Note. All other values are 0.008 or less 
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Figure 5. 

All 150 Factors by Feature Permutation Feature Importance 

 

 

Figure 6. 

Top 50 Factors by Feature Permutation Feature Importance 
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Figure 7. 

Top 20 Factors by Feature Permutation Feature Importance 

 

 

Shapley Value Feature Importance 
 

The ear, UMD, and HML factors are most important based on Shapely values; however, 

the distribution of Shapley values decreases more slowly than the feature permutation feature 

importance and mean decrease in impurity feature importances. Table 8 displays the mean 

absolute Shapley values for each of the 20 most important factors. Shapley values decrease more 

smoothly and slowly than the feature permutation and mean impurity decrease feature 

importance scores (demonstrated in Figure 8 and Figure 9). Based on Shapley values, ear, 

UMD, and HML are the three most factors by a decent margin (see Figure 10). 

Looking beyond the distribution of mean absolute Shapley values for each factor, I also 

looked at each factor’s distribution of individual Shapley values among observations. All of the 

20 most important factors have a large proportion of observations clustered at similar Shapley 

values; however, the more important factors have more individual points with much larger 
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absolute Shapley values (see Figure 11). This characteristic suggests that the ranking of mean 

absolute Shapley values is partly driven by large effects that factors have on a subset of test 

assets in addition to moderate effects that factors have on all test assets. I then assessed Shapley 

values even more granularity by looking at individual Shapley values without taking absolute 

values (see Figure 12). This measure allows me to determine which factors have either positive 

or negative effects on predictions. Interestingly, every factor had many positive values and 

negative values, suggesting that every factor can either increase or decrease the predicted 

amount. Some factors, such as ear and dsti, have a cluster of positive Shapley values and only a 

handful of negative Shapley values. Conversely, some factors, such as HML and dy, have a 

cluster of negative Shapley values and only a handful of positive Shapley values. Additionally, 

some factors, including UMD and sue, have both positive and negative Shapley value clusters. 

This variation of the sign of a feature’s Shapley values between observations allows for a deeper 

understanding of the model’s inner workings; however, focusing on the mean absolute Shapley 

value for each factor allows for a better understanding of the overall importance of a factor based 

on how much that factor affects predicted returns. 
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Table 8. 

Mean Absolute Shapley Values of Features in Random Forest 

Factor Mean Absolute Shapley Value 

ear 0.008717 

UMD 0.008508 

HML 0.007774 

dsti 0.006407 

sue 0.006281 

dy 0.005701 

SMB 0.005380 

salecash 0.005100 

currat 0.004663 

stdcf 0.004600 

ta 0.004251 

nef 0.003727 

maxret 0.003234 

retvol 0.002994 

stdacc 0.002743 

LIQ_PS 0.002693 

sp 0.002595 

QMJ 0.002332 

dolvol 0.002323 

grltnoa 0.002305 
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Figure 8. 

All 150 Factors by Shapley Value Feature Importance 

 

 

Figure 9. 

Top 50 Factors by Shapley Value Feature Importance 
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Figure 10. 

Top 20 Factors by Shapley Value Feature Importance 

 

 

Figure 11. 

Individual Absolute Shapley Values for Top 20 Factors by Absolute Mean Value 
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Figure 12. 

Individual Shapley Values for Top 20 Factors by Absolute Mean Shapley Value 

 

 
Comparing Factor Importance Across Models 
 
 The OLS, LASSO, and random forest models led to quite different factor importance 

rankings while the factor importance rankings for random forests were very similar whether 

calculated through mean decrease in impurity, feature permutation, or Shapley values. In this 

section, I will first discuss which factors were most important the most often in my models, and I 

will then discuss the overlap between models of which factors were most important. 
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Evaluating the Most Important Factors Overall 
 
 I evaluated factors based on how often they were in the top 1, 3, 5, 10, or 20 most 

important factors across the five approaches I used. Of the 150 factors I analyzed, 46 factors 

were in the top 20 at least once. 29 factors were in top 10 at least once. 14 were in the top 5 at 

least once. 11 were in the top 3 at least once, and 4 were the most important factor at least once 

(see Table 9). Based on these frequencies, I split the factors into 5 groups. Group 1 included the 

factors that were highly important in most or all of the models. Group 1 contained 5 factors: 

UMD, ear, HML, salecash, and dsti. Group 2 was comprised of factors that were highly 

important in some models but not important in others. This group included 7 factors: roic, 

orgcap, invest, cinvest, covind, pchsaleinv, and gma.  Group 3 consisted of factors that were 

slightly important in most or all models, and this group included 14 factors: SMB, nef, QMJ, 

currant, dy, sue, quick, LIQ_PS, ta, stdacc, stdcf, sp, retvol, and maxret. Group 4 was the factors 

that were slightly important in one or two models but unimportant in the others. This group was 

comprised of 20 factors: ol, mom36m, grltnoa, dnca, herf, std_turn, pctacc, absacc, ala, poa, pm, 

dcoa, std_dolvol, divo, exr, aeavol, age, dolvol, zerotrade, and acc. Group 5 was comprised of 

the other 104 factors that were not among the 20 most important factors in any of my models. 

This grouping of factors suggests a five-factor model using UMD, ear, HML, salcash, and dsti 

since those factors were the most important the most often. 

 
 
 
 

 

 

 



 
 

47 

Table 9. 

Number of Times Factors Were Selected at Various Relative Importance Levels 

Factor # Top 20 # Top 10 # Top 5 # Top 3 # Top 1 

UMD 5 5 4 3 2 

ear 5 4 4 3 1 

HML 5 4 2 2 0 

SMB 5 2 0 0 0 

salecash 4 4 2 1 0 

dsti 4 3 3 1 0 

nef 4 1 0 0 0 

QMJ 4 0 0 0 0 

currat 3 3 2 1 0 

dy 3 3 0 0 0 

sue 3 2 1 0 0 

quick 3 1 0 0 0 

LIQ_PS 3 1 0 0 0 

ta 3 1 0 0 0 

stdacc 3 1 0 0 0 

stdcf 3 1 0 0 0 

sp 3 0 0 0 0 

retvol 3 0 0 0 0 

maxret 3 0 0 0 0 

roic 2 1 1 1 0 

orgcap 2 1 1 0 0 

ol 2 1 0 0 0 
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mom36m 2 1 0 0 0 

grltnoa 2 0 0 0 0 

invest 1 1 1 1 1 

cinvest 1 1 1 1 1 

covind 1 1 1 1 0 

pchsaleinv 1 1 1 1 0 

gma 1 1 1 0 0 

dnca 1 1 0 0 0 

herf 1 1 0 0 0 

std_turn 1 1 0 0 0 

pctacc 1 1 0 0 0 

absacc 1 1 0 0 0 

ala 1 0 0 0 0 

poa 1 0 0 0 0 

pm 1 0 0 0 0 

dcoa 1 0 0 0 0 

std_dolvol 1 0 0 0 0 

divo 1 0 0 0 0 

exr 1 0 0 0 0 

aeavol 1 0 0 0 0 

age 1 0 0 0 0 

dolvol 1 0 0 0 0 

zerotrade 1 0 0 0 0 

acc 1 0 0 0 0 

Note. Looking at OLS, LASSO, random forest MDI, random forest FP, & random forest Shapley 
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Similarity of Factor Importance Between Models 
 

The factor importance derived from the mean decrease in impurity, feature permutation, 

and Shapley values had a large overlap with each other while the OLS and LASSO models had 

little overlap with each other or the random forest feature importance methods. When looking at 

the 20 most important factors in each model, 4 factors are shared among all methods: UMD, ear, 

HML, and SMB. The 3 feature importance measures for random forests all share 9 or 10 of their 

top 20 factors with 2 other methods, meaning that those methods exclusively share about half of 

their top 20 factor importance. The OLS and LASSO models had the largest number of unique 

factors in the top 20 importance, demonstrating that these two models had less overlap (see 

Table 10). In comparing the features among the 5 most important factors for each selection 

method, less overlap is present. As shown in Table 11, no factor is in the top 5 importance 

values for all 5 selection methods; however, UMD and ear are among the 5 most important 

factors in 4 of the selection methods. All methods but LASSO include ear in the top 5, and all 

methods but OLS include UMD in the top 5. UMD was the sixth most important factor in the 

OLS model, however, so UMD seems to be the most important single factor overall, followed by 

ear as the second most important factor overall. 
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Table 10. 

Number of Factors in Top 20 Shared with Other Selection Methods 

Method Unique 1 Shared 2 Shared 3 Shared 4 Shared 

OLS 11 4 1 0 4 

LASSO 7 3 1 4 4 

Mean Decrease in Impurity 2 2 10 4 4 

Feature Permutation 1 1 9 4 4 

Shapley 1 1 10 4 4 
 
 
Table 11. 

Number of Factors in Top 5 Shared with Other Selection Methods 

Method Unique 1 Shared 2 Shared 3 Shared 4 Shared 

OLS 4 0 0 1 0 

LASSO 3 1 0 1 0 

Mean Decrease in Impurity 0 2 1 2 0 

Feature Permutation 0 2 1 2 0 

Shapley 1 1 1 2 0 
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DISCUSSION 
Introduction  
 
 Given the proliferation of factors identified by various researchers, this paper uses the 

LASSO and random forest machine learning models (along with mean decrease in impurity, 

feature permutation, and Shapley values) to determine which factors best explain cross-sectional 

returns. My research has three main findings. First, UMD (momentum), ear (earnings 

announcement return), HML (high minus low), salecash (sales-to-cash), and SMB (small minus 

big) are the most important factors due to their persistent high importance across models. 

Second, factor importance varies moderately when using different models. Third, factor 

importance varies slightly when using different metrics of factor importance for the same model. 

In this section, I will discuss using machine learning models, comparing feature importance 

between models, and calculating feature importance through different methods. I will then 

discuss the limitations of my research and areas for further research. 

 

Implications for Using Machine Learning Models 
 
 Machine learning models offer a great approach for dealing with the high-dimensionality 

of factor data. While my OLS model could not properly handle 150 independent variables, the 

LASSO and random forest were perfectly able to handle the number of variables and data used. 

The LASSO model used regularization to penalize the inclusion of too many terms in a linear 

model while the random forest used an ensemble of independent, nonlinear decision trees to 

produce a more powerful model. While both models are effective compared to OLS regression in 

hig-dimensionality, LASSO and random forest offer different benefits.  

The current research has varying views on the most effective machine learning model for factor 

investing, and my results did not prove either LASSO or random forest to be definitivlety better 
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than the other. Considering I obtained different information about factor importance from each, I 

believe future research should continue exploring the use of several different machine learning 

models. 

 

Implications for Comparing Feature Importance Between Models 
 

My random forest, LASSO, and OLS models gave differing results on factor importance, 

so comparing several models is important for producing more robust results. In my research, 

some factors were important for all the models while some were only important for one or two of 

the models. For example, UMD, ear, and HML were very important according to the OLS, 

LASSO, and random forest models. Other factors, such as currat, dy, stdacc, LIQ_PS, and sue, 

were only important for the random forest while some factors, like invest, pchsaleinv, gma, dnca, 

and pctacc, were only important for the LASSO model. Further, the OLS model uniquely 

returned cinvest, convind, and herf as important factors. In order to be maximally confident in 

the final model and output, a framework is needed to use several highly accurate models in 

combination. 

 
Implications for Calculating Feature Importance Using Different Methods 
 

I calculated feature importance scores using mean decrease of Gini impurity, feature 

permutation, and Shapley values, and each method has advantages and disadvantages. 

 

Mean Decrease of Gini Impurity 
 
 Mean decrease of Gini impurity measures the average amount by which each factor 

improves a decision tree by splitting a node on that factor, but the method has two problems: it is 

not easily interpretable, and it only works for tree-based models. The values given by mean 
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decrease of impurity are standardized in order to allow for direct comparison and give relative 

feature important; however, that standardization makes directly interpreting the value more 

difficult, as the value is essentially a type of test statistic. Also, since mean decrease of impurity 

can only be used for tree-based models, the method cannot be used for comparisons to other 

types of models. 

 
Feature Permutation  
 
 Feature permutation measures feature importance based on how much the model suffers 

without a given feature, and the main advantages are that the technique is generalizable and is 

more interpretable. Feature permutation involves randomly shuffling the order of one of the 

features in order to break any link to the target variable. The feature importance is then measured 

as the drop in model score. Since that random shuffling process for any model, and every model 

has some type of scoring value, feature permutation works for any model. The interpretation of 

this value is the marginal contribution of a feature to model performance, so feature permutation 

is a great method for understanding factor importance in terms of how much they contribute to 

predictive power.  

 
Shapley Values to Measure Feature Importance 
 
 Shapley values also work for any model and are easily interpretable because they involve 

assigning each individual feature a portion of the difference between a single observation’s 

predicted value and the average predicted value. For example, while feature permutation 

illustrates that factor “x” contributes a marginal R-squared of 2%, Shapley values say that factor 

“x” contributes 0.3% worth of the 3% difference between the 8% predicted return of asset “A” 

and the 5% average predicted return across all assets. In other words, that Shapley value of 0.3, 
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means that factor “x” explains 10% of the difference between the average predicted value and 

the predicted value of observation “A.” The mean absolute Shapley value is then interpreted as 

how much a given factor, on average, explains the returns of individual assets relative to the 

average return of all assets. This interpretation is more insightful into the impact of a factor on 

the target variable directly rather than on R-squared (or the accuracy of predicting the target 

variable). Shapley values and feature permutation provide alternate interpretations that give 

similar, but slightly different, factor importance, so using both seems like a strong approach. 

 

Limitations and Further Research 
 

This paper utilized Fama-MacBeth regressions modified with LASSO and random forest 

models to perform an in-sample analysis and determine factor importance, and the main 

limitations arise from this narrow scope. In this section, I will discuss the limitations of my 

research and potential future research directions centered on the following ideas: performing an 

out of sample analysis and grouping correlated factors. 

 
Performing Out of Sample Analysis 
 
 My research was performed using only in-sample analysis, in order to more closely 

match the methodology of Fama and MacBeth (1973). In-sample analysis means that I used all 

available data to train the models. This approach provides more data to feed to model to explain 

past returns but is less likely to perform as well on new, future data. I would extend this research 

by holding back some testing data, and incorporating out of sample analysis. 
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Grouping Correlated Factors 
 
 One potential issue in my research is that correlated factors were competing with each 

other for feature importance scores, so my current ranking of feature importance may be skewed. 

An approach to improve this issue would be to group correlated factors together before running 

the model and assigning feature importance scores. In this approach, fewer factors would be 

given feature importance scores, but those scores would contain the value that was previously 

attributed to a multitude of correlated factors. This consolidation may help to increase economic 

interpretability by combining factors that contain similar economic information.  
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APPENDIX: KEY FOR INCLUDED FACTORS 
 
Row Description Mean tstat Authors Year 

MktRf Excess Market 
Return 

0.0064 3.2580 Black and Jensen and 
Scholes 

1972 

beta Market Beta -0.0008 -0.3468 Fama and Macbeth 1973 

ep Earnings to price 0.0028 1.9134 Basu 1977 

dy Dividend to price 0.0001 0.0384 Litzenberger and 
Ramaswamy 

1979 

sue Unexpected 
quarterly 
earnings 

0.0012 1.6969 Rendelman and Jones 
and Latane 

1982 

pps Share price 0.0002 0.1393 Miller and Scholes   1982 

LTR Long-Term 
Reversal  

0.0034 2.3402 De Bondt and Thaler 1985 

lev Leverage 0.0021 1.5649 Bhandari 1988 

cashdebt Cash flow to debt -0.0009 -1.0963 Ou and Penman 1989 

currat Current ratio 0.0006 0.4957 Ou and Penman 1989 

pchcurrat % change in 
current ratio 

0.0000 0.0306 Ou and Penman 1989 

pchquick % change in 
quick ratio 

-0.0004 -0.7661 Ou and Penman 1989 

pchsaleinv % change sales-
to-inventory 

0.0017 2.9788 Ou and Penman 1989 

quick Quick ratio -0.0002 -0.1849 Ou and Penman 1989 

salecash Sales to cash 0.0001 0.0994 Ou and Penman 1989 

saleinv Sales to inventory 0.0009 1.0383 Ou and Penman 1989 

salerec Sales to 
receivables 

0.0014 1.4678 Ou and Penman 1989 

baspread Bid-ask spread -0.0004 -0.2094 Amihud and Mendelson 1989 

depr Depreciation / 
PP&E 

0.0011 0.7772 Holthausen and Larcker 1992 

pchdepr % change in 
depreciation 

0.0008 1.4859 Holthausen and Larcker 1992 
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SMB Small Minus Big  0.0021 1.5766 Fama and French 1993 

HML High Minus Low  0.0028 2.2125 Fama and French 1993 

STR 1-month 
momentum 

0.0015 1.3948 Jegadeesh and Titman 1993 

mom6m 6-month 
momentum 

0.0021 1.7922 Jegadeesh and Titman 1993 

mom36m 36-month 
momentum 

0.0009 0.8634 Jegadeesh and Titman 1993 

sgr Sales growth 0.0004 0.3723 Lakonishok and Shleifer 
and Vishny 

1994 

cp Cash flow-to-
price 

0.0031 2.0921 Lakonishok and Shleifer 
and Vishny   

1994 

IPO New equity issue 0.0010 0.5587 Loughran and Ritter 1995 

divi Dividend 
initiation 

-0.0003 -0.2205 Michaely and Thaler and 
Womack 

1995 

divo Dividend 
omission 

-0.0018 -1.1620 Michaely and Thaler and 
Womack 

1995 

acc Working capital 
accruals 

0.0022 2.9644 Sloan 1996 

sp Sales to price 0.0035 2.6956 Barbee and Mukherji and 
Raines 

1996 

cto Capital turnover -0.0011 -1.0722 Haugen and Baker   1996 

UMD Momentum  0.0063 3.2345 Carhart 1997 

turn Share turnover -0.0002 -0.1379 Datar and Naik and 
Radcliffe 

1998 

pchgm_pchsale % change in 
gross margin - % 
change in sales 

-0.0005 -0.8010 Abarbanell and Bushee 1998 

pchsale_pchinvt % change in sales 
- % change in 
inventory 

0.0014 2.7127 Abarbanell and Bushee 1998 

pchsale_pchrect % change in sales 
- % change in 
A/R 

0.0014 2.7997 Abarbanell and Bushee 1998 
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pchsale_pchxsga % change in sales 
- % change in 
SG&A 

0.0009 1.2649 Abarbanell and Bushee 1998 

etr Effective Tax 
Rate 

-0.0004 -0.5832 Abarbanell and Bushee   1998 

lfe Labor Force 
Efficiency 

-0.0003 -0.5485 Abarbanell and Bushee   1998 

os Ohlson's O-score 0.0005 0.6015 Dichev   1998 

zs Altman's Z-score 0.0020 1.4243 Dichev   1998 

pchcapx_ia Industry adjusted 
% change in 
capital 
expenditures 

0.0010 1.3219 Abarbanell and Bushee 1998 

nincr Number of 
earnings 
increases 

0.0001 0.1789 Barth and Elliott and 
Finn 

1999 

indmom Industry 
momentum 

0.0001 0.0921 Moskowitz and 
Grinblatt   

1999 

ps Financial 
statements score 

0.0008 1.1872 Piotroski 2000 

bm_ia Industry-adjusted 
book to market 

0.0022 2.4475 Asness and Porter and 
Stevens 

2000 

cfp_ia Industry-adjusted 
cash flow to price 
ratio 

0.0026 3.3535 Asness and Porter and 
Stevens 

2000 

chempia Industry-adjusted 
change in 
employees 

-0.0001 -0.0968 Asness and Porter and 
Stevens 

2000 

mve_ia Industry-adjusted 
size 

0.0036 2.3359 Asness and Porter and 
Stevens 

2000 

dolvol Dollar trading 
volume 

0.0038 2.3052 Chordia and 
Subrahmanyam 
and  Anshuman 

2001 

std_dolvol Volatility of 
liquidity (dollar 
trading volume) 

0.0020 2.4978 Chordia and 
Subrahmanyam and 
Anshuman 

2001 
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std_turn Volatility of 
liquidity (share 
turnover) 

0.0002 0.1338 Chordia and 
Subrahmanyam 
andAnshuman 

2001 

adm Advertising 
Expense-to-
market 

-0.0013 -1.0030 Chan and Lakonishok 
and Sougiannis 

2001 

rdm R&D Expense-
to-market 

0.0034 2.3314 Chan and Lakonishok 
and Sougiannis 

2001 

rds R&D-to-sales 0.0006 0.3544 Chan and Lakonishok 
and Sougiannis 

2001 

kz Kaplan-Zingales 
Index 

0.0022 1.6270 Lamont and Polk and 
Saa-Requejo   

2001 

chinv Change in 
inventory 

0.0018 2.6232 Thomas and Zhang 2002 

chtx Change in tax 
expense 

0.0009 1.1614 Thomas and Zhang 2002 

ill Illiquidity 0.0034 1.8448 Amihud 2002 

LIQ_PS Liquidity 0.0038 2.4843 Pastor and Stambaugh 2003 

idiovol Idiosyncratic 
return volatility 

0.0007 0.3312 Ali and Hwang and 
Trombley 

2003 

grltnoa Growth in long 
term net 
operating assets 

0.0022 3.3386 Fairfield and Whisenant 
and Yohn 

2003 

ob_a Order backlog 0.0005 0.3703 Rajgopal and Shevlin and 
Venkatachalam   

2003 

grltnoa_hxz Changes in Long-
term Net 
Operating Assets 

0.0024 3.6100 Fairfield and Whisenant 
and Yohn   

2003 

cfp Cash flow to 
price ratio 

0.0027 2.0438 Desai and Rajgopal and 
Venkatachalam 

2004 

rd R&D increase 0.0006 0.7156 Eberhart and Maxwell 
and Siddique 

2004 

cinvest Corporate 
investment 

0.0013 2.3477 Titman and Wei and Xie 2004 

roavol Earnings 
volatility 

0.0010 0.6890 Francis and LaFond and 
Olsson and Schipper 

2004 
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cinvest_a Abnormal 
Corporate 
Investment 

0.0013 2.0126 Titman and Wei and 
Xie   

2004 

noa Net Operating 
Assets 

0.0031 4.2926 Hirshleifer and Hou and 
Teoh and Zhang   

2004 

dnoa Changes in Net 
Operating Assets 

0.0014 2.6791 Hirshleifer and Hou and 
Teoh and Zhang   

2004 

tb Tax income to 
book income 

0.0014 1.8241 Lev and Nissim   2004 

pricedelay Price delay 0.0007 1.0807 Hou and Moskowitz 2005 

age years since first 
Compustat 
coverage 

0.0001 0.0718 Jiang and Lee and Zhang 2005 

egr Growth in 
common 
shareholder 
equity 

0.0015 1.7763 Richardson and Sloan 
and Soliman and Tuna 

2005 

lgr Growth in long-
term debt 

0.0006 0.8541 Richardson and Sloan 
and Soliman and Tuna 

2005 

dcoa Change in 
Current 
Operating Assets 

0.0019 2.2317 Richardson and Sloan 
and Soliman and Tuna 

2005 

dcol Change in 
Current 
Operating 
Liabilities 

0.0003 0.4083 Richardson and Sloan 
and Soliman and Tuna 

2005 

dwc Changes in Net 
Non-cash 
Working Capital 

0.0011 1.6224 Richardson and Sloan 
and Soliman and Tuna   

2005 

dnca Change in Non-
current Operating 
Assets 

0.0021 2.8677 Richardson and Sloan 
and Soliman and Tuna   

2005 

dncl Change in Non-
current Operating 
Liabilities 

0.0004 0.6216 Richardson and Sloan 
and Soliman and Tuna   

2005 

dnco Change in Net 
Non-current 
Operating Assets 

0.0023 2.2782 Richardson and Sloan 
and Soliman and Tuna   

2005 
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dfin Change in Net 
Financial Assets 

0.0023 3.8008 Richardson and Sloan 
and Soliman and Tuna   

2005 

ta Total accruals 0.0019 2.8855 Richardson and Sloan 
and Soliman and Tuna   

2005 

dsti Change in Short- 
term Investments 

-0.0003 -0.5371 Richardson and Sloan 
and Soliman and Tuna 

2005 

dfnl Change in 
Financial 
Liabilities 

0.0018 3.6149 Richardson and Sloan 
and Soliman and Tuna   

2005 

egr_hxz Change in Book 
Equity 

0.0017 1.9309 Richardson and Sloan 
and Soliman and Tuna 

2005 

ms Financial 
statements score 

0.0017 2.3900 Mohanram   2005 

chmom Change in 6-
month 
momentum 

0.0021 1.9213 Gettleman and Marks 2006 

grcapx Growth in capital 
expenditures 

0.0014 1.9610 Anderson and Garcia-
Feijoo 

2006 

retvol Return volatility -0.0002 -0.1077 Ang and Hodrick and 
Xing and Zhang 

2006 

zerotrade Zero trading days -0.0005 -0.2816 Liu 2006 

pchcapx3 Three-year 
Investment 
Growth 

0.0011 1.5172 Anderson and Garcia-
Feijoo   

2006 

cei Composite 
Equity Issuance 

-0.0001 -0.1393 Daniel and Titman   2006 

nef Net equity 
finance 

0.0008 0.6273 Bradshaw and 
Richardson and Sloan   

2006 

ndf Net debt finance 0.0017 3.1129 Bradshaw and 
Richardson and Sloan   

2006 

nxf Net external 
finance 

0.0022 2.4879 Bradshaw and 
Richardson and Sloan   

2006 

rs Revenue 
Surprises 

0.0005 0.5816 Jegadeesh and Livnat   2006 

herf Industry 
Concentration 

0.0003 0.2471 Hou and Robinson   2006 
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ww Whited-Wu 
Index 

-0.0002 -0.1700 Whited and Wu   2006 

roic Return on 
invested capital 

0.0018 1.8907 Brown and Rowe 2007 

tang Debt 
capacity/firm 
tangibility 

0.0005 0.4555 Almeida and Campello 2007 

op Payout yield 0.0016 1.1247 Boudoukh and Michaely 
and Richardson and 
Roberts   

2007 

nop Net payout yield 0.0016 1.1098 Boudoukh and Michaely 
and Richardson and 
Roberts   

2007 

ndp Net debt-to-price 0.0002 0.1631 Penman and Richardson 
and Tuna   

2007 

ebp Enterprise book-
to-price 

0.0014 0.9454 Penman and Richardson 
and Tuna   

2007 

chcsho Change in shares 
outstanding 

0.0024 2.3268 Pontiff and Woodgate 2008 

aeavol Abnormal 
earnings 
announcement 
volume 

-0.0008 -1.0963 Lerman and Livnat and 
Mendenhall 

2008 

ear Earnings 
announcement 
return 

0.0002 0.4409 Kishore and Brandt and 
Santa-Clara and 
Venkatachalam 

2008 

moms12m Seasonality 0.0016 1.1130 Heston and Sadka   2008 

dpia Changes in PPE 
and Inventory-to-
assets 

0.0019 2.7073 Lyandres and Sun and 
Zhang   

2008 

pchcapx Investment 
Growth 

0.0017 2.5468 Xing   2008 

cdi Composite Debt 
Issuance 

0.0008 1.3935 Lyandres and Sun and 
Zhang   

2008 

rna Return on net 
operating assets 

0.0009 0.5534 Soliman   2008 

pm Profit margin 0.0002 0.2861 Soliman   2008 
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ato Asset turnover 0.0006 0.4344 Soliman   2008 

chatoia Industry-adjusted 
change in asset 
turnover 

0.0014 2.6463 Soliman 2008 

chpmia Industry-adjusted 
change in profit 
margin 

-0.0001 -0.2037 Soliman 2008 

cashpr Cash productivity 0.0027 2.4207 Chandrashekar and Rao 2009 

sin Sin stocks 0.0044 2.6829 Hong and Kacperczyk 2009 

rsup Revenue surprise 0.0012 1.2404 Kama 2009 

stdcf Cash flow 
volatility 

0.0020 1.7155 Huang 2009 

absacc Absolute accruals -0.0005 -0.5511 Bandyopadhyay and 
Huang and Wirjanto 

2010 

invest Capital 
expenditures and 
inventory 

0.0019 2.7572 Chen and Zhang 2010 

roaq Return on assets -0.0009 -0.8961 Balakrishnan and Bartov 
and Faurel 

2010 

stdacc Accrual volatility 0.0019 1.7132 Bandyopadhyay and 
Huang and Wirjanto 

2010 

realestate_hxz Industry-adjusted 
Real Estate Ratio 

0.0011 1.1166 Tuzel   2010 

pctacc Percent accruals 0.0016 2.2563 Hafzalla and Lundholm 
and Van Winkle 

2011 

maxret Maximum daily 
return 

0.0000 -0.0192 Bali and Cakici and 
Whitelaw 

2011 

ol Operating 
Leverage 

0.0020 2.1127 Novy-Marx 2011 

ivg Inventory Growth 0.0013 1.9368 Belo and Lin   2011 

poa Percent 
Operating 
Accruals 

0.0015 1.8611 Hafzalla and Lundholm 
and Van Winkle   

2011 

em Enterprise 
multiple 

0.0011 1.1348 Loughran and Wellman   2011 
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cash Cash holdings 0.0013 0.9838 Palazzo 2012 

HML_Devil HML Devil  0.0023 1.4569 Asness and Frazzini 2013 

gma Gross 
profitability 

0.0015 1.4466 Novy-Marx 2013 

orgcap Organizational 
Capital 

0.0021 2.0536 Eisfeldt and 
Papanikolaou 

2013 

BAB Betting Against 
Beta  

0.0091 5.9774 Frazzini and Pedersen 2014 

QMJ Quality Minus 
Junk  

0.0043 3.8690 Asness and Frazzini and 
Pedersen 

2014 

hire Employee growth 
rate 

0.0008 0.8289 Bazdresch and Belo and 
Lin 

2014 

gad Growth in 
advertising 
expense 

0.0007 0.8395 Lou 2014 

ala Book Asset 
Liquidity 

0.0009 0.7937 Ortiz-Molina and 
Phillips   

2014 

RMW Robust Minus 
Weak  

0.0034 3.2074 Fama and French 2015 

CMA Conservative 
Minus 
Aggressive 

0.0026 3.0172 Fama and French 2015 

HXZ_IA HXZ Investment 0.0034 4.1706 Hou and Xue and Zhang 2015 

HXZ_ROE HXZ 
Profitability  

0.0057 4.9901 Hou and Xue and Zhang 2015 

Intermediary Intermediary 
Risk Factor 

0.0015 0.5118 He and Kelly and Manela 2016 

convind Convertible debt 
indicator 

0.0011 1.6983 Valta 2016 

Note. A version of this table was originally produced by Feng et al. (2020) 
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